پیش بینی حلالیت اکسیژن در حلال های آلی با استفاده از شبکه عصبی مصنوعی

نویسندگان

علی ترجمان نژاد

مهناز یاسمی

چکیده

در این مقاله یک شبکه عصبی مصنوعی برای محاسبه حلالیت اکسیژن در حلال های آلی مورد بررسی قرار گرفته است. حلال های بررسی شده شامل متانول، پروپانول، اکتان، تولوئن، دی اتیل اتر و 2-متیل تترا هیدروفورن هستند. داده ها برای بازه وسیعی از دما (k29/348 – 2/298) و فشار (mpa2338/9 - 0535/0) بررسی شده اند. ورودی های شبکه عصبی شامل جرم مولکولی، ضریب اسنتریک، دمای کاهیده و فشار کاهیده حلال مورد نظر هستند و خروجی شبکه عصبی حلالیت اکسیژن است. بهینه طراحی ممکن برای شبکه عصبی، شبکه پیش خور با الگوریتم پس انتشار خطا، تابع آموزش انتشار رو به عقب لونبرگ مارکوارت، تابع فعال سازی سیگمودی برای لایه مخفی با 13 نرون در این لایه و تابع فعال سازی خطی برای لایه خروجی است. نتیجه­ ها نشان می دهند که توسط شبکه عصبی بهینه می توان مقدارهای حلالیت را با ضریب همبستگی (r2) برابر 999997/0، درصد میانگین انحراف نسبی (ard%) برابر 8103/0 و درصد میانگین انحراف مطلق (aad%) برابر 0042/0پیش بینی کرد. تحلیل حساسیت نشان می دهد که دمای کاهیده بیشترین تأثیر را بر روی خروجی شبکه عصبی یعنی حلالیت داراست.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیش‌بینی حلالیت اکسیژن در حلال های آلی با استفاده از شبکه عصبی مصنوعی

در این مقاله یک شبکه عصبی مصنوعی برای محاسبه حلالیت اکسیژن در حلال‌های آلی مورد بررسی قرار گرفته است. حلال‌های بررسی شده شامل متانول، پروپانول، اکتان، تولوئن، دی اتیل اتر و 2-متیل تترا هیدروفورن هستند. داده‌ها برای بازه وسیعی از دما (K29/348 – 2/298) و فشار (MPa2338/9 - 0535/0) بررسی شده‌اند. ورودی‌های شبکه عصبی شامل جرم مولکولی، ضریب اسنتریک، دما...

متن کامل

مدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی

شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...

متن کامل

پیش بینی تقاضای کوتاه مدت آب شهر تهران با استفاده از شبکه های عصبی مصنوعی

پیش بینی تقاضای کوتاه مدت آب شهری کمک موثری به مدیران و بهره برداران سیستمهای آب شهری می باشد تا بتوانند نسبت به مدیریت صحیح مصرف، مخازن، پمپها، شیرآلات و تصفیه خانه ها اقدام نمایند. مصرف کوتاه مدت آب تابعی از پارامترهای مختلف و متنوع مانند شرائط اقلیمی و هواشناسی، مناسبتهای فرهنگی، اقتصادی، اجتماعی و مصارف گذشته می باشد. بدلیل همین تنوع، پیش بینی مصرف کوتاه مدت بصورت تحلیلی بسیار مشکل و یا نام...

متن کامل

پیش بینی تقاضای کوتاه مدت آب شهر تهران با استفاده از شبکه های عصبی مصنوعی

Short-term water demand modeling plays a key role in urban water resources planning and management. The importance of demand prediction is even greater in countries like Iran with frequent periods of drought. Short-term water demand estimation is useful for planning and management of water and wastewater facilities such as pump scheduling, control of reservoirs and tanks volume, pressure manage...

متن کامل

پیش بینی سطح مدیریت سود با استفاده از شبکه های عصبی مصنوعی...

اکثر تحقیقات انجام شده در حوزه مدیریت سود به بررسی انگیزه ها و عوامل موثر بر سطح مدیریت سود پرداخته اند، ولی از این متغیرها به طور مستقیم برای پیش بینی سطح مدیریت سود استفاده نشده است. در نتیجه تنها همبستگی بین مدیریت سود و این متغیرها بررسی شده است. از این رو، طراحی یک مدل برای پیش بینی سطح مدیریت سود به منظور کاهش ریسک بحران های مالی ناشی از مدیریت سود و کمک به سرمایه گذاران، اعتبار دهندگان و...

متن کامل

پیش بینی میزان غلظت آلاینده های هوای تهران با استفاده از شبکه عصبی مصنوعی

در این تحقیق شبکه عصبی مصنوعی جهت برآورد و پیش بینی غلظت گازهای آلاینده هوا به کار رفته است.با توجه به خطر آلودگی هوا در شهر تهران و ایجاد مشکلات زیست محیطی و بیماری های خطرناک تنفسی و پوستی به ویژه برای کودکان و سالمندان و نیاز شدید به کنترل آن ، این تحقیق در جهت برنامه ریزی و کنترل این مشکل در تهران و همچنین شهرهای بزرگ دیگر انجام گرفته است. برای این منظور از آمار غلظت گازهای آلاینده هوای ثبت...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
نشریه شیمی و مهندسی شیمی ایران

ناشر: جهاد دانشگاهی- پژوهشکده توسعه صنایع شیمیایی ایران

ISSN 1022-7768

دوره 33

شماره 1 2014

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023